NEW OXIDISED ENT-ATISENE DITERPENES FROM EUPHORBIA FIDJIANA

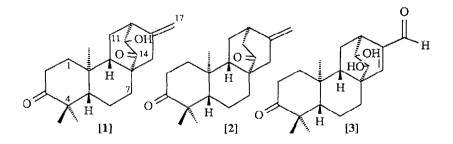
A. R. Lal, R. C. Cambie*, P. S. Rutledge, P. D. Woodgate,

C. E. F. Rickard and G. R. Clark

Department of Chemistry,

University of Auckland, Auckland, NEW ZEALAND

Abstract. The heartwood of *Euphorbia fidjiana* Boiss. has yielded three oxygenated *ent*-atisene diterpenoids, *ent*-13[R]-hydroxy-3,14-dioxo-16-atisene [1], *ent*-3,14-dioxo-16-atisene [2] and *ent*-13[R],14[R]-dihydroxy-3-oxo-15-atisen-17-al [3]. The structure and relative stereochemistry were determined from detailed nmr studies and an X-ray structure of [1]. [1] is converted in air into [3].

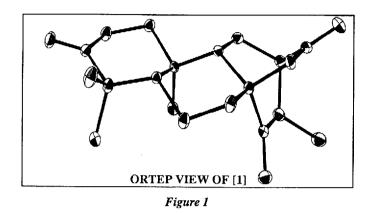

The family *Euphorbiaceae* is of considerable interest for its anti-leukaemic and co-carcinogenic compounds.¹ As part of an ongoing phytochemical study of Fijian medicinal plants,² we have examined extracts of the heartwood of *Euphorbia fidjiana* Boiss. Preparations from this plant are used for a variety of ailments such as constipation, weaning infants, eczema, headache, stomach-ache and tuberculosis.³ We report here the structures of three new oxidised *ent*-atisene diterpenes isolated by multiple column chromatography of an ether extract.

Compound [1], mp 175-177°, $[\alpha]_D^{25}+44^\circ$ (c, 0.03, CHCl₃), $C_{20}H_{28}O_3$ (HRMS: m/z 316.2017, required 316.2036), showed absorptions for a hydrogen-bonded secondary hydroxyl group (3460, 1064 cm^{-1}), two carbonyl groups (1690, 1720 cm^{-1}), and a 1,1-disubstituted double bond (1620, 900 cm^{-1}) in the ir spectrum. The ¹H nmr spectrum [400 MHz] confirmed the presence of an exocyclic methylene group and showed the presence of three methyl groups and that the alcohol was adjacent to a methine group. It followed that [1] was tetracyclic, suggesting that it was either an atisene, kaurene, or phyllocladene derivative. Examination of the homonuclear COSY-2D and the XHCORRD spectra revealed four isolated spin systems; a four-spin system [CH₂CH₂], a five-spin system [CHCH₂CH₂], a five-spin system [CHCH₂CHCH], and another four-spin system [CH₂=CCH₂] which included allylic coupling. This evidence, and in particular the [CHCH2CH] system, showed that [1] possessed an atisene skeleton. The positions of the functional groups were assigned from examination of ¹³C nmr [100 MHZ] spectra. Thus, two quaternary carbon signals at 8 47.3 and 47.5, assigned to C 4 and C 8 respectively from a COLOC spectrum, suggested the presence of keto groups adjacent to these positions. The gem-dimethyl group signals at ≥ 21.9 and 26.1 had chemical shifts expected for a C 3 keto compound,⁴ and the [CH₂CH₂] system had chemical shifts expected for C 1 and C 2. The second keto-group could be assigned to either C 7, C 14, or C 15. Since the C 15 protons showed allylic coupling to the exocyclic methylene protons, and since the C 7 protons were present in the [CHCH₂CH₂] system, the second keto group was assigned to C 14 and thus the hydroxyl group to C 13, thereby completing the [CHCH₂CHCH] system. A NOESY-2D spectrum showed a strong NOE correlation between H 13 and H (20)3 indicating a 13[R] configuration for the ent-atisene skeleton. The trans-A/B, trans-B/C ring junctions were confirmed by the observation of ⁴J coupling (0.68 Hz) between H 20, and H 5 and H 9 in the homonuclear JRESOLVED spectrum.

The relative stereochemistry of [1] was confirmed by an X-ray analysis (figure 1). The absolute stereochemistry is assumed to be as shown by analogy with that assigned to *ent*-atisane diterpenes from *Euphorbia acaulis*.^{5,6} Work is in progress to confirm this.

A less polar fraction yielded [2], mp 160-164°, $[\alpha]_D^{25}+5.5$ (c 0.02, CHCl₃), $C_{20}H_{28}O_2$ (m/z 300), the ir spectrum of which revealed two CO absorptions (1705, 1695 cm⁻¹) and an olefinic group (1620, 890 cm⁻¹), as for [1]. The ¹H and ¹³C nmr spectra each showed close similarity with those of [1] except that H 12 now appeared as a broad quintet rather than as a quartet, indicating the presence of an additional vicinal hydrogen, and C 13 was now a methylene group rather than a CHOH group. The proposed structure [2] is consistent with the above data and was corroborated by 2-D nmr experiments.

A more polar fraction yielded a minor component [3], $C_{20}H_{28}O_4$ (HRMS: m/z 332.1988, required 332.1988), as an oil⁷. The ir spectrum showed the presence of hydroxyl groups (3400 cm⁻¹, br), CO absorptions (1728, 1701 cm⁻¹), and unsaturation (1614, 1600 cm⁻¹, w). Comparison of the ¹H and ¹³C nmr spectra with those of [1] indicated that the A/B ring moiety was identical. The mass spectrum revealed an initial loss of 30 m.u.(CHOH) followed by cleavage into two fragments of m.u. 151 corresponding to the ions $C_{10}H_{15}O^+$ and $C_9H_{11}O_2^+$. This is consistent with the presence of three oxygens in the C/D ring moiety. The ¹H nmr spectrum showed the presence of an aldehydic proton ($\delta 9.55$), a deshielded olefinic proton $(\delta 6.67)$ and two oxygenated methine protons $(\delta 3.86, s, br, 3.66, m)$. Also, the signal due to the exocyclic methylene protons and the C 15 protons of [1] at $\delta 2.32$ were absent in the spectrum of [3]. The salient features in the ${}^{13}C$ nmr spectrum were signals of an aldehydic carbon (δ 188.4), a deshielded trisubstituted olefinic carbon (\$149.9), a relatively shielded tetrasubstituted olefinic carbon (\$137.2) and two oxygenated methine carbons (871.9, 76.1). These observations suggested the presence of a C 15-C 16 double bond conjugated to a C 17 aldehyde, and of secondary alcohols at C 13 and C 14. The stereochemistry at C 13 was assumed to be the same as in [1], and as there was no apparent coupling between H 13 and H 14 the dihedral angle was deduced to be approximately 90°, leading to the proposed structure. Spectral examination of an initially pure sample of [1] showed that it was slowly converted in air into [3].



The correlated ¹H and ¹³C nmr chemical shifts for [1], [2], and [3] are listed in Table 1.

<u>Carbon</u>	<u>Compou</u> δ ¹³ C	$\frac{nd [1]}{\delta^{1}H}$	<u>Compou</u> δ ¹³ C	<u>nd [2]</u> δ ¹ Η	<u>Compou</u> δ ¹³ C	$\frac{13}{\delta^{1}H}$
C1	36.7	1.39,ddd	37.2	1.37,ddd 1.84,ddd	36.7	1.45,ddd 1.86,ddd
C2	34.1	1.87,ddd 2.34,ddd 2.56,ddd	34.1	2.34,ddd 2.57,ddd	34.1	2.35,ddd 2.59,ddd
C3	216.1		216.5#		216.6	
C4	47.3		47.6		47.4	
C5	55.2	1.32,dd	55.3	1.29,dd	54.9	1.40,m
C6	20.0	1.50,m 1.51,m	20.0	1.52,m 1.65,m	19.6	1.50,m 1.60,m
C7	30.4	0.95,m 2.41,ddd	31.2	0.92,m 2.35,ddd	30.4	1.00,m 2.76.ddd
C8	47.5		47.7		37.4	
C9	51.1	1.66,dd	51.8	1.65,dd	51.4	1.64
C10	37.6		37.6		37.4	
C11	25.4	1.76,ddd 2.02,ddd	27.9	1.66,ddd 1.95,ddd	23.9	1.73,m 1.78,m
C12	44.8	2.83,ddd	38.3	2.73,dddd	41.5	2.79,m
C13	75.1	3.88,d	44.6	2.32,m	76.1*	3.66,m
C14	218.1		216.6#		71.9*	3.86,s,br
C15	43.7	2.32,t 2H	42.6	2.30,m 2.34,m	149.9	6.67,d
C16	142.3		147.1		137.2	
C17	111.1	4.86,dt 5.02,dt	107.2	4.69,dt 4.90,dt	188.4	9.55,s,br
C18	26.2	1.09,s	26.0	1.09,s	26.1	1.12,s
C19	21.9	1.01,s	21.9	1.02,s	21.8	1.03,s
C20	13.7	0.85,s	12.8	0.88,s	13.8	0.91,s

Table 1. Correlated ¹H and ¹³C NMR Data for [1], [2] and [3]

* : may be interchanged # : may be interchanged

Compounds [1] and [2] were active against L1210 mouse leukaemia with IC50>25.0.

Acknowledgements. We thank Dr. W. Aalbersberg, University of South Pacific, Fiji, for supplying the heartwood, and Dr. W.A. Denny, Auckland Cancer Research Institute, Auckland for carrying out the pharmacological screening.

References

- 1. S.M. Kupchan, I. Uchida, A.R. Branfman, R.G. Dailey and B.Y. Fei, Science, 191, 571, (1976).
- 2. For Part III, see R.C. Cambie, J.M. Coddington, M.J. Stone, N. Tanaka, L. Yong-hua and S. Arigayo, *Phytochem.*, in press.
- 3. R.C. Cambie and J. Ash, "Fijian Medicinal Plants", unpublished manuscript.
- 4. F.W. Wehrli and T. Nishida, Fortschr. Chem. Organ. Nat., 36, 1 (1979).
- 5. N.K. Satti, O.P. Suri, K.L. Dhar, T. Kawasaki, K. Miyahara and N. Noda, J. Nat. Prod., 50, 790 (1987).
- 6. N.K. Satti, O.P. Suri, R.K. Thaper and P.L. Kachroo, Phytochem., 27, 1530 (1988).
- 7. UV: λ_{max} 240 nm (c 0.0015, CHCl₃), log ϵ 2.74.

(Received in UK 26 April 1989)